Project Amiga Juggler

Step 0
Programming-especially when you are just starting out, learning how to code-endows you with a sense of control, a sense of power. Often, it's like playing a God game, at least when you do it recreationally. Of course, you need to spell out to extremely high precision exactly what you want the machine to do. But, then it's forced to carry out your instructions. It's forced to obey

You can derive a similar sense of fun from mathematics. You can force math to do amazing things on your behalf. Of course, you need to figure out the right equations, but once you code them into your programs, the formulae are under your control. They too will obey

To show you what I mean, let's do some recreational programming. Let's recreate the Amiga Juggler from scratch using core Java
In the fall of 1986, Eric Graham discovered that the Amiga 1000 personal computer, running at a meager 7.16 MHz , was powerful enough to ray trace simple 3D scenes. His test animation consisted of an abstract, humanoid robot juggling 3 mirrored balls. It stunned the Amiga community including the executives at Commodore, who later acquired the rights to the animation for promotional purposes.

 about these topics back in school. Let's review.

Step 1
A three-dimensional vector is simply a list of 3 numbers. It can represent a point in space, a direction, a velocity, an acceleration, etc. It can even represent a color in RGB color space. For coding simplicity, l'll represent a vector as an array of doubles of length 3 . An object with 3 double fields is probably more efficient, but l'm trying to minimize the amount of code to write.

Many vector functions act on the individual components independently. For example, to add 2 vectors together, you simply need to add each pair of components together.

```
public static void add(double[] a, double[] b, double[] c)
    for(int i = 0; i < 3; i++) {
        a[i] = b[i] + c[i];
    }
```

The magnitude of a vector (the length of a vector) is computing using the 3-dimensional version of the Pythagorean Theorem.

```
// |v|
    public static double magnitude(double[] v) {
    return Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
```

\}

You can scale a vector (change its length) by multiplying it by a constant (a.k.a. a scalar).

```
public static void scale(double[] a, double[] b, double s)
    for(int i = 0; i < 3; i++) {
        a[i] = b[i] * s;
}
```

You can negate a vector by scaling by -1 , reversing its direction. If you divide a vector by its magnitude (scale by $1 /$ magnitude), you end up with a unit vector (a vector of length 1).
 indefinitely in a straight line at a constant velocity (a unit of distance for every unit of time). Its position at any time is given by the ray equation.

Above, a vector is scaled by a constant and the result is added to another vector.

```
    // a = b + c * s
    public static void ray(double[] a, double[] b, double[] c, double s) {
        for(int i = 0; i < 3; i++) {
            a[i] = b[i] + c[i] * s;
        }
```

Most vector functions are intuitive, but 2 are mysterious: dot-product and cross-product.

$$
\vec{u}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

$$
\vec{u} \cdot \vec{v}=a d+b e+c f
$$

$$
\vec{v}=\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]
$$

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
b f-c e \\
c d-a f
\end{array}\right.
$$

$$
a e-b d
$$

$$
\begin{aligned}
\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a & b & c \\
d & e & f
\end{array}\right| & =\left|\begin{array}{ll}
b & c \\
e & f
\end{array}\right| \hat{\imath}-\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| \hat{\jmath}+\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right| \hat{k} \\
& =(b f-c e) \hat{\imath}+(c d-a f) \hat{\jmath}+(a e-b d) \hat{k}
\end{aligned}
$$

 bridge by scratching the equations into the stonework (WTF?).

Hamilton's solution involved introducing 2 new imaginary-like constants:

$$
\hat{\imath}^{2}=\hat{\jmath}^{2}=\hat{k}^{2}=\hat{\imath} \hat{\jmath}=-1
$$

You can multiply pairs of those constants in 6 different ways. Below, note that the commutative property of multiplication does not work here (order matters).

Using those pairs, it's possible to multiply 2 quaternions together. When the real components are both 0 (absent), you end up with this:

$$
\begin{aligned}
(a \hat{\imath} & +b \hat{\jmath}+c \hat{k})(d \hat{\imath}+e \hat{\jmath}+f \hat{k}) \\
& =a \hat{\imath}(d \hat{\imath}+e \hat{\jmath}+f \hat{k})+b \hat{\jmath}(d \hat{\imath}+e \hat{\jmath}+f \hat{k})+c \hat{k}(d \hat{\imath}+e \hat{\jmath}+f \hat{k}) \\
& =-a d+a e \hat{k}-a f \hat{\jmath}-b d \hat{k}-b e+b f \hat{\imath}+c d \hat{\jmath}-c e \hat{\imath}-c f \\
& =-(a d+b e+c f)+(b f-c e) \hat{\imath}+(c d-a f) \hat{\jmath}+(a e-b d) \hat{k}
\end{aligned}
$$

The real part on the left is the negative dot product and vector part on the right is the cross product. As mathematicians used quaternions in the decades after their discovery, they began to recognize that they were often using them to compute exactly those values. To make life easier, the vector product operators were introduced.

Dot product is an operation that takes place on the plane for which the vectors reside. The image below shows a view of that plane.

 problem is find vector \mathbf{p}.
You can redraw it as 2 right triangles that share a common side and height.

From there, it's just a matter of applying the Pythagorean Theorem twice.

$$
\begin{aligned}
& \cos \theta=\frac{|\vec{p}|}{|\vec{v}|}|\vec{v}| \cos \theta=|\vec{p}| \\
& |\vec{v}|^{2}=d^{2}+e^{2}+f^{2} \quad \vec{u}-\vec{v}=\left[\begin{array}{c}
a-d \\
b-e \\
c-f
\end{array}\right] \\
& |\vec{u}|^{2}=a^{2}+b^{2}+c^{2} \\
& |\vec{p}|^{2}+h^{2}=|\vec{v}|^{2} \\
& =\left(a^{2}+b^{2}+c^{2}\right)+\left(d^{2}+e^{2}+f^{2}\right) \\
& -2(a d+b e+c f) \\
& (|\vec{u}|-|\vec{p}|)^{2}+h^{2}=|\vec{u}-\vec{v}|^{2} \\
& =|\vec{u}|^{2}+|\vec{v}|^{2}-2(a d+b c+c f) \\
& |\vec{y}|^{2}+|\vec{p}|^{2}-2|\vec{u}||\vec{p}|+h^{2}=|\vec{\psi}|^{2}+|\vec{v}|^{2}-2(a d+b e+c f) \\
& \left|\vec{p} x^{2}-\not 2\right| \vec{u}\left||\vec{p}|+|\vec{y}|^{2}-|\vec{x}|^{2}=|\vec{x}|^{2}-\not 2(a d+b e+c f)\right. \\
& \begin{array}{cc}
|\vec{u}||\vec{p}|=a d+b e+c f & \vec{p}=|\vec{p}| \frac{\vec{u}}{|\stackrel{\rightharpoonup}{u}|} \\
|\vec{u}||\vec{v}| \cos \theta=a d+b e+c f & \vec{p}=\frac{\vec{u}(\vec{u} \cdot \vec{v})}{|\vec{u}|^{2}}
\end{array}
\end{aligned}
$$

In addition to finding \mathbf{p}, I wrote down a useful equation that shows that dot product is proportional to the magnitude of the vectors involved and the cosine of the angle between them. Note if the angle is 90 degrees, then the dot product is 0 . If the angle is less-than 90 , then the dot product is positive. And, if the angle is greater-than 90 , then the dot product is negative

But, what if vector \mathbf{u} was a lot shorter than vector \mathbf{v} ?

As you can see, you end up with exactly the same answer. If the angle is greater than 90 degrees, you can negate one of the vectors to end up with something similar to one of the pictures above. Again, you'll get the same answer.

Cross product is used to find a vector, \mathbf{w}, perpendicular to the plane that \mathbf{u} and \mathbf{v} reside.

The angle between \mathbf{u} and \mathbf{v} is not necessarily 90 , but the angles between \mathbf{u} and \mathbf{w} and \mathbf{v} and \mathbf{w} are both 90 . From dot product, that gives us:

$$
\begin{aligned}
\vec{u} \cdot \vec{\omega} & =0 \\
\vec{v} \cdot \vec{\omega} & =0 \\
a g+b h+c i & =0 \\
d g+e h+f i & =0
\end{aligned}
$$

$$
\vec{u}=k \stackrel{\rightharpoonup}{v}
$$

If they are not parallel, then at least one of the following relationships cannot exist.

$$
a=k d, b=k e, c=k f
$$

Suppose that the first or the second relationship is false. Then, we can rewrite the 2 original equations like this:

$$
\begin{aligned}
& a g+b h=-c i \\
& d g+e h=-f i
\end{aligned}
$$

Next, we solve for g and h using Cramer's Rule. Note that if the first and the second of the aforementioned relationships were both true, then we would be dividing by 0 .

$$
g=\frac{\left|\begin{array}{cc}
-c i & b \\
-f i & e
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right|} \quad h=\frac{\left|\begin{array}{cc}
a & -c i \\
d & -f i
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right|}
$$

We end up with this:

$$
g=\frac{b f-c e}{a e-b d} i \quad h=\frac{c d-a f}{a e-b d} i
$$

Now, you have some freedom here. You can actually set ito any value of your choosing and compute g and h accordingly. The resulting vector, \mathbf{w}, will be perpendicular to the $\mathbf{u v}$-plane. But, you may happen to notice that the (non-zero) denominators of both fractions in the formulae are the same. If you set i to that value, the denominators vanish and the result is the definition of cross product.

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \times\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{l}
b f-c e \\
c d-a f \\
a e-b d
\end{array}\right]
$$

If the first and the second of the aforementioned relationships were true, then you could make a similar argument using the second and the third instead since at least one of them must be false assuming the vectors are not parallel. When they are parallel, the cross product is a null vector.

One important aspect of cross product (not proved here) is that it obeys the right-hand rule.
Finally, using all these vector ideas, I put together the following utility class.

```
public final class Vec {
    private Vec() {
    }
    // a += b
    public static void add(double[] a, double[] b) {
        for(int i = 0; i < 3; i++) {
        a[i] += b[i];
    }
    // a = b + c
    public static void add(double[] a, double[] b, double[] c) {
        for(int i = 0; i < 3; i++) {
        a[i] = b[i] + c[i];
    }
    // a -= b
    public static void subtract(double[] a, double[] b) {
        for(int i = 0; i < 3; i++) {
        a[i] -= b[i];
    }
}
// a = b - c
    public static void subtract(double[] a, double[] b, double[] c) {
        for(int i = 0; i < 3; i++) {
        a[i] = b[i] - c[i];
    }
// a *=s
public static void scale(double[] a, double s) {
    for(int i = 0; i < 3; i++) {
        a[i] *=s;
    } }
}
// a = b * s
    public static void scale(double[] a, double[] b, double s) {
        for(int i = 0; i < 3; i++) {
        a[i] = b[i] * s;
    }
// a /= s
public static void divide(double[] a, double s) {
    double inverse = 1.0/ s;
        for(int i = 0; i < 3; i++) {
        a[i] *= inverse;
    }
}
    // a = b / s
    public static void divide(double[] a, double[] b, double s) {
        double inverse = 1.0/ s;
```

$1 / a=b$
public static void assign(double[] a, double[] b) \{
public static void assign(doub
for(int $i=0$; $i<3$; i++) \{
for(int $i=0 ;$
$a[i]=b[i] ;$
, a
\}
// $a=(x, y, z)$
public static void assign(double[] a, double x, double y, double $z)$
public static
$a[0]=x ;$
$a[0]=x ;$
$a[1]=y ;$
$a[1]=y ;$
$a[2]=z ;$
\} a
// |v|
public static double magnitude (double[] v) \{
return Math.sqrt(v[0] * $\mathrm{v}[0]+\mathrm{v}[1]$ * $\mathrm{v}[1]+\mathrm{v}[2]$ * $\mathrm{v}[2])$;
${ }^{3}{ }^{\text {r }}$
// |v|^2
public static double magnitude2 (double[] v) \{
return $\mathrm{v}[0] * \mathrm{v}[0]+\mathrm{v}[1] * \mathrm{v}[1]+\mathrm{v}[2] * \mathrm{v}[2]$
${ }^{3}$
// b - b
public static double distance (double[] a, double[] b) \{
double $\mathrm{x}=\mathrm{a}[0]-\mathrm{b}[0]$;
double $y=a[1]-b[1]$
double $z=a[2]-b[2]$;
return Math. sqrt (x * $x+y$ * $y+z$ * z);
\}
// |a - b|^2
public static double distance2 (double[] a, double [] b) \{
double $\mathrm{x}=\mathrm{a}[0]-\mathrm{b}[0]$
double $y=a[1]-b[1]$
double $z=a[2]-b[2]$
return x * $x+y$ * $y+z$ * z;
\}
// a = a/ |a|
public void normalize (double[] a) \{
double $s=1.0 /$ Math.sqrt (a[0] * $a[0]+a[1] * a[1]+a[2] * a[2])$;
for (int $i=0 ; i<3$; $i++$) $\{$
a[i] $*=s$;
\} ${ }^{\text {\} }}$
\}
$/ / a=b$ / |b|
public void normalize (double[] a, double[] b) \{
double $s=1.0 /$ Math. sqrt $(\mathrm{b}[0] * \mathrm{~b}[0]+\mathrm{b}[1] * \mathrm{~b}[1]+\mathrm{b}[2] * \mathrm{~b}[2])$;
for(int $i=0$; $i<3$; $i++$) $\{$
$\mathrm{a}[\mathrm{i}]=\mathrm{b}[\mathrm{i}]$ * s ;
\}
\}
// a = -a
public static void negate (double[] a) \{
for (int $i=0 ; i<3 ; i++)$ \{
$a[i]=-a[i] ;$
\}
\}
// a = -b
public static void negate(double[] a, double[] b) \{
for (int $i=0 ; i<3$; $i++$)
$\mathrm{a}[\mathrm{i}]=-\mathrm{b}[\mathrm{i}]$;
\} ${ }^{\text {\} }}$
\}
// $\mathrm{a}+=\mathrm{b}$ * s
public static void ray(double[] a, double[] b, double s) \{
for (int $i=0 ; i<3 ; i++)\{$
$\mathrm{a}[\mathrm{i}]+=\mathrm{b}[\mathrm{i}]$ * s ;
$\}^{f}$
// $\mathrm{a}=\mathrm{b}+\mathrm{c} * \mathrm{~s}$
public static void ray(double[] a, double[] b, double[] c, double s) \{
for (int $i=0 ; i<3 ; i++$) $\{$
$a[i]=b[i]+c[i]$ * s;
, \} ${ }^{\text {a }}$
\}
// a . b
public static double $\operatorname{dot}($ double[] a, double[] b)
return $\mathrm{a}[0] * \mathrm{~b}[0]+\mathrm{a}[1] * \mathrm{~b}[1]+\mathrm{a}[2]$ * $\mathrm{b}[2]$;
\}
$/ / \mathrm{b}=\mathrm{b} \times \mathrm{c}$
public static void cross (double[] b, double[] c) \{
double $\mathrm{x}=\mathrm{b}[1]$ * $\mathrm{c}[2]-\mathrm{b}[2]$ * $\mathrm{c}[1]$;
double $y=b[2]$ * $c[0]-b[0]$ * $c[2]$;
double $\mathrm{z}=\mathrm{b}[0]$ * $\mathrm{c}[1]-\mathrm{b}[1]$ * $\mathrm{c}[0]$.
$\mathrm{b}[0]=\mathrm{x}$;
$\mathrm{b}[1]=\mathrm{y} ;$
$\mathrm{b}[2]=\mathrm{z} ;$
$\mathrm{b}[2]=\mathrm{z}$;
\}
// $\mathrm{a}=\mathrm{b} \times \mathrm{c}$
public static void cross (double[] a, double[] b, double[] c) \{
double $\mathrm{x}=\mathrm{b}[1] * \mathrm{c}[2]-\mathrm{b}[2] * \mathrm{c}[1] ;$
double $\mathrm{y}=\mathrm{b}[2] * \mathrm{c}[0]-\mathrm{b}[0] * \mathrm{c}[2] ;$
double $y=b[2] * c[0]-b[0] * c[2]$;
double $\mathrm{z}=\mathrm{b}[0]$ * $\mathrm{c}[1]-\mathrm{b}[1]$ * $\mathrm{c}[0]$;
$\mathrm{a}[0]=\mathrm{x}$;
$a[0]=x ;$
$a[1]=y ;$
$a[1]=y ;$
$a[2]=z ;$
, \}
\}

It's unfortunate that Java does not support operator overloading. Instead, this is an all static class like the math class.

```
import java.awt.image.*;
import javax.imageio.*;
import java.io.*;
import java.util.*
public class Main {
    public static final int SQRT_SAMPLES = 1;
    public static final int IMAGE_SCALE = 3;
    public static final int WIDTH = 1920 / IMAGE_SCALE;
    public static final int HEIGHT = 1080 / IMAGE_SCALE;
    public static final String IMAGE_TYPE = "jpg";
    public static final String OUTPUT_FILE = "output." + IMAGE_TYPE;
    public static final double GAMMA = 2.2;
    public static final int SAMPLES = SQRT_SAMPLES * SQRT_SAMPLES
    public static final double INVERSE_SAMPLES = 1.0 / SAMPLES;
    public static final double INVERSE_GAMMA = 1.0 / GAMMA;
    public static final long SECOND_MILLIS = 1000L
    public static final long MINUTE_MILLIS = 60 * SECOND_MILLIS
    public static final long HOUR_MILLIS = 60 * MINUTE_MILLIS;
    private double[][][] pixels = new double[HEIGHT][WIDTH][3];
    public void launch() throws Throwable {
    saveImage();
    }
    private void saveImage() throws Throwable (
        int[] data = new int[WIDTH * HEIGHT];
        for(int y = 0, k = 0; y < HEIGHT; y++) {
            for(int x = 0; x < WIDTH; x++, k++) {
            for(int i = 0;
            in i < 3; i++) {
                int intensity = (int)Math.round(255
                * Math.pow(pixels[y][x][i] * INVERSE_SAMPLES, INVERSE_GAMMA));
            if (intensity < 0)
                } else if (intensity > 255) {
                intensity = 255;
            }
            value |= intensity;
            f [a[k] = value.
            data[k] = value;
    }
    BufferedImage image = new BufferedImage(
            WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB);
        image.setRGB(0, 0, WIDTH, HEIGHT, data, 0, WIDTH);
        ImageIO.write(image, IMAGE_TYPE, new File(OUTPUT_FILE));
    }
    public static void main(String... args) throws Throwable {
        long startTime = System.currentTimeMillis();
    Main main = new Main();
    main.launch();
    long interval = System.currentTimeMillis() - startTime
    long hours = interval / HOUR_MILLIS;
    interval %= HOUR_MILLIS;
    long minutes = interval / MINUTE_MILLIS;
    interval %= MINUTE_MILLIS;
    long seconds = interval/SECOND_MILLIS;
    interval %= SECOND_MILLIS;
    System.out.format ("%d hour%s, %d minute%s, %d second%s, %d millisecond%s%n",
        hours, hours == 1 ? "" : "s"
        minutes, minutes == 1 ? "" : "s"
        seconds, seconds == 1 ? (% "s",
    }
}
```


As you can see, it stores an all black image.
The main method contains code that outputs the rendering time (ray tracing is a slow process).
The pixels array will store the RGB values of each pixel in the image as it is rendered. Each color intensity component is in the range of 0.0 (darkest) to 1.0 (lightest). However, to compute the color value of a pixel, the code will statistically sample that part of the 3D scene a specified number of times (the constant sAMples) and it will average the samples together. The pixels array stores the sum of all the samples for each pixel. The saveImage method divides by the number of samples to convert the sum into an average

 before multiplying.

$$
255 c^{1 / \gamma}
$$

Step 3

To push this machine to the max, I added code to render in parallel executing threads.

```
private int runningCount,
private int rowIndex;
public void launch() throws Throwable {
    int processors = Runtime.getRuntime().availableProcessors();
    updateRunningCount (processors)
    for(int i = 0; i < processors; i++)
        new Thread(Integer.toString(i))
            @override
            public void run()
                render();
            updateRunningCount(-1)
        }
        }.start();
    }
    synchronized(this) {
        synchronized(this) {}\mathrm{ while(runningCount != 0) {
            while(runn
        }
    }
    saveImage();
}
private void render() {
    while(true) {
        int y = getNextRowIndex();
        if (y >= HEIGHT) {
        return;
        }
        for(int x = 0; x < WIDTH; x++) {
        }
    } }
private synchronized void updateRunningCount(int dx) {
    runningCount += dx;
    if (runningCount == 0) {
        notifyAll();
    },
    private synchronized int getNextRowIndex() {
    return rowIndex++;
}
```

 before the Task Manager reports 100\% CPU usage.

Each thread will work on separate rows of the image. The getNextRowIndex method returns the next row of the image yet to be rendered.

Step 4

I decided it would be nice to see the output as it is slowly generated. To make that happen, I created a panel capable of displaying images.

```
import java.awt.*;
import javax.swing.*;
import java.awt.image.*;
public class ImagePanel extends JPanel {
    private BufferedImage image;
    public ImagePanel(BufferedImage image) {
        this.image = image;
        setPreferredSize(new Dimension(image.getWidth(), image.getHeight()));
    }
    @Override
    @Override votected void paintComponent(Graphics g) {
    protected void paintComponent(Gra
    }
}
```

Next, I created a frame to display the panel. The constructor captures a BufferedImage and calling the imageUpdated method forces it to repaint.

```
import java.awt.*;
import javax.swing.*;
import java.awt.image.*;
public class RenderFrame extends JFrame {
    private ImagePanel imagePanel;
public RenderFrame (BufferedImage image) {
    setTitle("Amiga Juggler");
    setTitle("Amiga Juggler"); new ImagePanel(image));
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    setResizable(false);
    pack();
    setLocationRelativeTo(null);
    setVisible(true);
}
public void imageUpdated() {
    EventQueue.invokeLater(new Runnable() {
```

```
    @Override
    ublic void run()
            imagePanel.repaint();
        f);
}
@override
    public void setTitle(final String title)
    EventQueue.invokeLater(new Runnable() {
        @override
            public void run() {
            RenderFrame.super.setTitle(title);
        });
    }
}
```

To support the frame, I had to move some stuff around. There is no longer a global pixels array. Instead, the render method allocates an int array representing color intensities of a single row with RGB values compatible with BufferedImage. The render method does the conversion itself from double intensities to int intensities by dividing by the number of samples to compute the average, applying gamma correction and then multiplying by 255 . When it finishes rendering a row, it invokes rowCompleted. That method updates the Bufferedimage and it forces the RenderFrame to repaint.
import java.awt.image.*;
import javax.imageio.*;
import java.io.*;
import java.util.*;
public class Main \{
public static final int SQRT _SAMPLES $=1$;
public static final int IMAGE_SCALE $=3$;
public static final int WIDTH $^{-}=1920 /$ IMAGE SCALE;
public static final int HEIGHT $=1080 /$ IMAGE_SCALE;
public static final String IMAGE_TYPE = "jpg";
public static final String OUTPUT̄_FILE = "output." + IMAGE_TYPE;
public static final boolean RENDER_IN_WINDOW = true;
public static final double GAMMA $=2.2$;
public static final int SAMPLES = SQRT SAMPLES * SQRT_SAMPLES;
public static final double INVERSE_SAMPLES $=1.0$ / SAMPLES;
public static final double INVERSE_GAMMA $=1.0 /$ GAMMA;
public static final long SECOND_MILLIS $=1000 \mathrm{~L}$;
public static final long MINUTE_MILLIS $=60$ * SECOND_MILLIS;
public static final long HOUR_MILLIS = 60 * MINUTE_MILLIS;
private RenderFrame renderFrame;
private BufferedImage image;
private int runningCount;
private int rowIndex;
public void launch() throws Throwable \{
image = new BufferedImage (WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB); if (RENDER_IN_WINDOW) \{
\} renderFrame ${ }^{-}=$new RenderFrame (image);
\}
int processors $=$ Runtime.getRuntime().availableProcessors();
updateRunningCount (processors);
for(int $i=0 ; i<$ processors; i++)
new Thread(Integer.toString(i))
new Thread(Integer.toString(i)) \{
public voi
public void run() \{ render();
updateRunningCount (-1) \}
f
synchronized(this) \{
$\begin{gathered}\text { synchronized(this) } \\ \text { while(runningCount }\end{gathered}=0$) \{
wait();
+
\}
saveImage();
if (RENDER_IN_WINDOW) (
renderFräme.setTitle("Amiga Juggler [DONE]");
\}
private void render() \{
int[] pixels = new int[WIDTH];
double[] pixel = new double[3];
while(true) \{
int $y=$ getNextRowIndex();
if (y >= HEIGHT) \{
return;
\}
for (int $\mathrm{x}=0$; $\mathrm{x}<$ WIDTH; $\mathrm{x}++$) \{

pixel[0] = 1;
try $\{$
Thread.sleep (1);
\} catch(InterruptedException e) \{
\}
int value $=0$;
for (int $i=0 ; i<3$; $i++$) $\{$
int intensity $=$ (int) Math. round (255

* Math.pow(pixel[i] * INVERSE_SAMPLES, INVERSE_GAMMA));
if (intensity < 0) $\{$
\} else if (intensity > 255) \{
intensity $=255$;
\} value <<= 8 ;

```
            value |= intensity;
            }
            pixels[x] = value;
    }
    rowCompleted(y, pixels);
}
private synchronized void updateRunningCount(int dx) {
    runningCount += dx;
        runningCount += dx;
        if (runningCount
    } }
}
private synchronized int getNextRowIndex()
    return rowIndex++;
}
private synchronized void rowCompleted(int rowIndex, int[] pixels) {
    image.setRGB(0, rowIndex, WIDTH, 1, pixels, 0, WIDTH);
    if (RENDER IN WINDOW)
        renderFrame.imageUpdated();
}
private void saveImage() throws Throwable {
    ImageIO.write(image, IMAGE_TYPE, new File(OUTPUT_FILE));
}
public static void main(String... args) throws Throwable {
    long startTime = System.currentTimeMillis();
    Main main = new Main();
    main.launch();
    long interval = System.currentTimeMillis() - startTime;
    long hours = interval / HOUR_MILLIS;
    interval %= HOURMMILLIS;
    long minutes = interval / MINUTE_MILLIS;
    interval %= MINUTE_MILLIS;
    long seconds = interval / SECOND_MILLIS;
    interval %= SECOND_MILLIS;
    System.out.format ("%d hour%s, %d minute%s, %d second%s, %d millisecond%s%n",
        hours, hours == 1 ? "" : "s",
        minutes, minutes = 1 ? "" ! "s"
        interval, interval == 1 ? "" : "s");
    }
}
To test it out, the inner loop in the render method contains code to slowly set pixels red.
```


source

Step 5

 spot on the film is only exposed to light arriving from one particular direction. Unfortunately, in the real world, the smaller the aperture, the longer the exposure time.

 staring at the center of the virtual screen.

 image has a corresponding point on the virtual screen in 3D space. Before it can cast a ray out into the scene, it has to figure out the direction of the ray.

I should mention that the coordinate system used looks like this:

The position and the orientation of the virtual screen is determined by 3 things: the location of the eye, \mathbf{e}; a point that the eye is looking at, I ; and, the distance, D , between the eye and the center of the virtual screen, \mathbf{c}.

We need to construct an orthonormal basis (ONB) situated at the center of the screen, c.

The unit vectors, \mathbf{u}, \mathbf{v} and \mathbf{w}, are perpendicular to each other. Collectively, the point \mathbf{c} and the ONB define a right-handed coordinate system. The point \mathbf{c} acts like the origin. The vector \mathbf{u} serves as the x-axis of the virtual screen. The vector \mathbf{v} acts as the y-axis of the virtual screen. And, the vector \mathbf{w} points toward the eye.
If you had some point $\mathbf{p}=(\mathrm{a}, \mathrm{b}, \mathrm{e})$ and you wanted to know where it was located in that coordinate system, you could position it using a variation of the ray equation.

$$
\begin{aligned}
& \vec{p}=\left[\begin{array}{l}
a \\
b \\
e
\end{array}\right] \\
& \vec{c}+a \vec{u}+b \vec{v}+e \vec{w}
\end{aligned}
$$

In our case, \mathbf{p} represents a point on the virtual screen; so, $\mathrm{e}=0$.
For the general case, I added 2 new methods to the vec utility class.

```
// p =o+p[0] u + p[1] v + p[2] w
    public static void transform(
        double[] p, double[] o, double[] u, double[] v, double[] w) {
    double x = O[0] +p[0] * u[0] + p[1] *v[0] + p[2] * w[0];
    double y =o[1] + p[0] * u[1] + p[1] * v[1] + p[2] * w[1];
    double z = O[2] + p[0] * u[2] + p[1] * v[2] + p[2] * w[2];
    p[0] = x;
    p[1] = y;
    p[2] = z;
}
//q=o + p[0]u + p[1]v + p[2] w
    public static void transform(
        double[] q, double[] p, double[] o, double[] u, double[] v, double[] w)
        double[] q, double[] p, double[] o, double[] u, double[]
    double x =o[0] + p[0] *u[0] + p[1] *v[0] + p[2] * w[0];
    double y =o[1] + p[0] * u[1] + p[1] * v[1] + p[2] * w[1];
    q[0] = x;
    q[1]= y;
}
```

The unit vector \mathbf{w} is the easiest of the 3 to obtain:

$$
\vec{\omega}=\frac{\stackrel{\rightharpoonup}{e}-\vec{l}}{|\stackrel{\rightharpoonup}{e}-\vec{l}|}
$$

```
public static void constructUnitVector(
    double[] v, double[] head, double[] tail) {
    for(int i = 0; i < 3; i++)
        v[i] = head[i] - tail[i];
    }
    double s = 1.0 / Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
    for(int i = 0; i < 3; i++) f
        v[i] = v[i] * s;
}
```

There is already a subtract method to construct a non-unit vector from 2 point vectors.
Now that we have \mathbf{w}, we can find \mathbf{c} by starting at \mathbf{e} and traveling a distance of -D along \mathbf{w} using the ray equation (\mathbf{w} points toward the \mathbf{e}).

$$
\vec{c}=\vec{e}-D \vec{\omega}
$$

 horizon will be parallel to the bottom of the photograph. Rarely do you roll the camera because it produces strange photographs.
 No camera roll is used in this project.
 can find \mathbf{u} using:

$$
\vec{u}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \times \vec{\omega}
$$

Again from the definition of the ONB, we can now solve for \mathbf{v}.

$$
\vec{v}=\vec{\omega} \times \vec{u}
$$

You can verify that applying cross products in this sequence does produce a right-handed coordinate system.
 straight down, then it will fail. But, it's clear what \mathbf{u} and \mathbf{v} should be in those cases.

I added these methods to vec:

```
public static final double TINY = 1e-9;
public static boolean equals(double[] a, double[] b) {
    public static boolean equals(d
        for(int i = ; i< < 3; 1++) (Math.abs(a[i] - b[i]) > TINY)
            if (Math.abs(ali
        }
        return true;
}
// v == (x, y, z)
public static boolean equals(double[] v, double x, double y, double z) {
    return Math.abs(v[0] - x) <= TINY
            && Math.abs(v[1] - y) <= TINY
    }
    // w -> u, v
    public static void onb(double[] u, double[] v, double[] w) {
        if (equals(w, 0, 1, 0)) (
            assign(u, 1, 0, 0);
        else if (equals(w, 0, -1, 0)) {
        assign(u, 1, 0, 0),
        assign(v, 0, 0, 1);
        } else {
        assign(u, w[2], 0, -w[0]);
        cross(v, w, u);
    }
```

The input of the onb method is \mathbf{w} and the output is \mathbf{u} and \mathbf{v}.
Putting it all together, I added this to the top of the render method:

```
double[] u = new double[3];
double[] v = new double[3]
double[] w = new double[3]
double[] c = new double[3]
Vec.constructUnitVector(w, EYE, LOOK);
Vec.ray(c, EYE, w, -DISTANCE_TO_VIRTUAL_SCREEN);
Vec.ray(c, EYe, w,
```


Step 6

We normally think of addressing pixels in an image or on the screen in terms of row and column index. The upper-left corner is origin and the y-axis points downwards. Consider this 4×4 image:

Again, without modifying the image, l'll move the origin to the center of the image and adjust the points coordinates to compensate.

 virtual screen width as A and the virtual screen height as B.

$$
\frac{W}{H}=\frac{A}{B}
$$

That gives us a way to find the virtual screen height:

$$
B=\frac{A H}{w}
$$

If we had some arbitrary point (x, y) in the image aspect ratio and we needed to convert it to the virtual screen aspect ratio, we could accomplish the conversion with this:

$$
\begin{aligned}
& x^{\prime}=\frac{A}{\omega} x \\
& y^{\prime}=\frac{B}{H} y=\frac{A}{\omega} y
\end{aligned}
$$

Combining the last 2 concepts leaves us with this:

$$
\vec{p}=\stackrel{\rightharpoonup}{C}+\left[\frac{A}{\omega}\left(a-\frac{\omega}{2}\right)\right] \stackrel{\rightharpoonup}{u}+\left[\frac{A}{\omega}\left(\frac{H}{2}-b\right)\right] \vec{v}
$$

That formula inspired these additions to vec:

```
//p =o+p[0] u + p[1] y
    public static void map(
        double[] p, double[] o, double[] u, double
        double x =o[0] +p[0] * u[0] + p[1] * v[0];
        double y =o[1] + p[0] * u[1] + p[1] * v[1];
    p[0] = x;
    p[0] = x;
    p[1] = y;
}
//q=o+p[0] u + p[1]
    double[] q, double[] p, double[] o, double[] u, double[] v) {
    double x =o[0] + p[0] * u[0] + p[1] * v[0];
    double y =o[1] + p[0] * u[1] + p[1] * v[1];
    double z = o[2] + p[0] * u[2] + p[1] * v[2];
    q[0] = x;
    q[1] = y;
}
// q = o + xu + y v
public static void map
    double[] q, double[] o, double[] u, double[] v, double x, double y) {
    double i =o[0] + x * u[0] + y * v[0];
    double j = O[1] + x * u[1] + y * v[1];
    double k = O[2] + x * u[2] + y * v[2];
    q[0] = i;
    q[1] = j;
    q[2] = k;
}
```

Since the point, \mathbf{p}, on the virtual screen is known, we can finally compute the direction of the ray, \mathbf{d} :

$$
\vec{d}=\frac{\stackrel{\rightharpoonup}{p}-\vec{e}}{|\stackrel{\rightharpoonup}{p}-\vec{e}|}
$$

Step 7

 techniques, but this technique works well enough and it's easy to code. Below is an example of a sampled image pixel.


```
public class RandomDoubles {
    private static volatile double[] values;
    private int index;
    public RandomDoubles() {
        synchronized(RandomDoubles.class) {
            if (values == null) {
                values = new double[700011]
                for(int i = values.length - 1; i >= 0; i--) {
                values[i] = Math.random();
            }
        }}\mathrm{ index = (int) (Math.random() * values.length);
    }
    }
    public double random() {
    if (index >= values.length) {
        if (index >= 
        }
        return values[index++];
}
```

The cache is initialized when the first instance of RandomDoubles is created. 70001 is a prime number. I chose a prime to reduce the chances of strange patterns from showing up in the output image as a consequence of cyclically using the same set of random values.
Here is the render method after introducing random sampling:

```
private void render() {
double[] u = new double[3];
double[] v = new double[3]
double[] w = new double[3];
double[] c = new double[3]
double[] p = new double [3];
double[] d = new double[3];
```

```
Vec.constructUnitVector(w, EYE, LOOK);
Vec.ray(c, EYE, w, -DISTANCE_TO_VIRTUAL_SCREEN);
Vec.onb (u, v, w);
    RandomDoubles randomDoubles = new RandomDoubles();
    int[] pixels = new int[WIDTH];
    double[] pixel = new double[3];
    while(true) {
    int y = getNextRowIndex();
    if (y >= HEIGHT) {
        return;
    }
    for(int x = 0; x < WIDTH; x++) {
        for(int i = 0; i < SQRT_SAMPLES; i++) {
            if (SQRT_SAMPLES == 1)- {
            b += 0.5
            } else {
            b += randomDoubles.random();
        }
        b = VIRTUAL_SCREEN_RATIO * (HALF_HEIGHT - b);
            for(int j = 0; j < SQRT_SAMPLES; j++) {
            double a = x + INVERSE्_SQRT_SAMPLES * j;
            if (SQRT_SAMPLES == 1) {
                a += 0.5;
                a += randomDoubles.random();
            }
                a = VIRTUAL_SCREEN_RATIO * (a - HALF_WIDTH);
                Vec.map (p, EYE, u, v, a, b);
                Vec.constructUnitVector(d, p, EYE);
                // ... USE d ...
        }
        int value = 0;
        for(int i = 0; i < 3; i++) {
            int intensity = (int)Math.round(255
                * Math.pow(pixel[i] * INVERSE_SAMPLES, INVERSE_GAMMA));
            if (intensity < 0) {
            } else if (intensity > 255) {
            } else if (intensit
            } intensity
            value |= intensity;
        }
        pixels[x] = value;
    }
    rowCompleted(y, pixels);
}
```

 center of the pixel.

Step 8

The juggling robot is constructed entirely out of spheres. The sky also appears to be a hemisphere. So, it is pertinent to work out how to intersect a ray and a sphere.

$$
\begin{aligned}
& \vec{a}=\left[\begin{array}{l}
3 \\
\vdots \\
i
\end{array}\right]\left[\begin{array}{l}
j \\
k \\
e
\end{array}\right] \\
& \left|\left[\begin{array}{l}
x-a \\
y-b \\
z-c
\end{array}\right]\right|^{2}=R^{2} \\
& (x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2} \\
& \overrightarrow{0}+t \vec{d}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& {\left[\begin{array}{l}
g \\
h \\
i
\end{array}\right]+t\left[\begin{array}{l}
i \\
k \\
l
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& x=g+t i \quad(t i+g-a)^{2}+(t k+h-b)^{2}+(t l+i-c)^{2}=R^{2} \\
& y=h+t k \quad m=g-a \quad o=i-c \\
& z=i+t l \\
& (i t+m)^{2}+(k t+n)^{2}+(l t+0)^{2}=R^{2} \\
& \left(i^{2}+k^{2}+l^{2}\right) t^{2}+2\left(i m+k n+l_{0}\right) t+\left(m^{2}+n^{2}+o^{2}\right)=R^{2} \\
& |\vec{d}|^{2} t^{2}+2\left(\vec{d} \cdot\left[\begin{array}{l}
g-a \\
h-b \\
i-c
\end{array}\right]\right) t+\left|\left[\begin{array}{c}
g-a \\
h-b \\
i-c
\end{array}\right]\right|^{2}=R^{2} \\
& |\vec{d}|^{2} t^{2}+2(\vec{d} \cdot(\overrightarrow{0}-\vec{p})) t+|\overrightarrow{0}-\vec{p}|^{2}=R^{2} \\
& A t^{2}+B t+C=0 \quad t=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
\end{aligned}
$$

Now we have the amount of time it takes for the ray to reach a sphere from the virtual eye. We will apply this formula to every sphere in the scene. If the value within the square-root is negative, then the ray does not intersect the sphere. Of the ones that do intersect, the one with the minimal time is the one that we see. Well almost. If a sphere is behind the eye, this formula will output a negative time value. Intersection only took place if time is positive.

We actually need to constrain time a bit more. The eye is not the only point that we will be casting rays from. For example, when a ray bounces off one of the mirrored spheres, we will cast a new ray off its surface. To prevent the possibility of intersection between a ray and a surface that emitted the ray, we need to make sure that time is greater than a tiny positive value that we'll call epsilon. Also, we need to make sure that time is smaller than some max value. For example, to determine if a surface is illuminated, we'll cast a ray back to a light source. In that case, time cannot be greater than the time it takes to reach the light source. Any intersections that occur beyond the source of light cannot be considered.

Once we locate the intersection with minimal time, we'll compute the color of the hit point using Prong Shading. Phon Shading takes into account the following vectors:

All of the vectors are unit vectors. The vector \mathbf{d} is the direction of the incident ray. The negation of \mathbf{d} points back to the ray's origin, back to the virtual eye. The vector \mathbf{n} is the surface normal. In case of a sphere, it is the vector between the hit point and the center of the sphere, normalized. However, it is possible that we may need to negate the normal to face the viewer. The angle between \mathbf{n} and -d must be less-than-or-equal-to 90 degrees. Meaning, if \mathbf{n} dot \mathbf{d} is positive, then we reverse the normal. The sky is a good example of this. It is the interior surface of a hemisphere and the normal must point inwards. The vector I is a unit vector pointing toward a light source. And, finally, the vector r is the mirror reflection of the vector I. It represents light originating from the light source and bouncing off of the surface.

Since Phony Shading uses a mirror reflection vector, let's consider bouncing a ray off of one of the mirror spheres. Below, a ray traveling in direction d strikes a surface at point \mathbf{h} with normal \mathbf{n} and then it reflects in direction \mathbf{r}.

Vector \mathbf{p} is the projection of $\mathbf{- d}$ onto \mathbf{n} (vector projection was illustrated in step 1).

$$
\begin{aligned}
& \vec{p}=\frac{\vec{n}(\vec{n} \cdot-\vec{d})}{|\vec{n}|^{2}}=\vec{n}(\vec{n} \cdot-\vec{d}) \\
& \vec{r}=2 \vec{p}+\vec{d} \quad \vec{r}=\vec{d}-2(\vec{n} \cdot \vec{d}) \vec{n}
\end{aligned}
$$

But, for Phon Shading, vector I actually points toward the light source; it's in the opposite direction that the light ray travels. If we negate the ray direction, we end up with:

$$
\vec{r}=-\vec{l}+2(\vec{n} \cdot \vec{l}) \frac{\rightharpoonup}{n}
$$

Finally, to shade the surface, we apply the Phong reflection model.

$$
\begin{aligned}
L_{0} & =k_{a} c_{d} l_{s} c_{a} \\
& +\left(\frac{k_{d} C_{d}}{\pi}\right)\left(l s C_{l}\right)(\vec{n} \cdot \vec{l}) \\
& +k_{s}(\vec{r} \cdot \cdot \vec{d})^{e}\left(l_{s} c_{l}\right)(\vec{n} \cdot \vec{l}) c_{s} \\
& +k_{r} c_{r} L_{1}
\end{aligned}
$$

 we would have to apply it to each of them and add them together.
 contribute to the color of the surface. And, if the reflected light ray cannot be viewed seen, then it does not contribute to the color either.
 the behavior of the surface.

- k_{a} : The ambient reflection constant considers light arriving at the surface from all directions as opposed to some specified light source.
- c_{d} : The diffuse color is the color of the surface if the light source were directly over it (\mathbf{n} dot $\mathbf{I}=1$).
- I_{s} : This is a radiance scaling factor. This allows you to scale the resulting sum.
- c_{a} : This is the color of the ambient surrounding light. It's typically just white.
- k_{d} : The diffuse reflection constant considers the diffuse color of the surface and the angle between the surface normal and a light source.
- c_{1} : This is the color of the light source.
- k_{s} : The specular reflection constant determines the strength of the highlights.
- e: When the shininess constant is large, the specular highlight is small.
- c_{s} : This is the color of the specular highlight. If you set this to c_{d}, it produces a metallic-like surface.
- k_{r} : The reflection constant adjusts the strength of the reflected ray.
- c_{r} : The reflection color filters the reflected ray.
- L_{1} : This is the radiance of the reflected ray computed by recursively applying the overall formula once again.

I created a class to describe the material of a surface.

```
public class Material {
    public double ambientWeight;
    public double diffuseWeight;
    public double specularWeight;
    public double reflectionWeight;
    public double shininess;
    public double[] diffuseColor;
    public double[] highlightColor;
    public double[] reflectionColor;
    public Material(
        double ambientWeight,
        double diffuseWeight,
        double specularWeight,
        double reflectionWeight,
        double shininess,
        double[] diffuseColor,
        double[] highlightColor,
        double[] reflectionColor)
    this.ambientWeight = ambientWeight;
    this.diffuseWeight = diffuseWeight;
    this.specularWeight = specularWeight;
    this.reflectionWeight = reflectionWeight;
    this.shininess = shininess;
    this.diffuseColor = diffuseColor;
    this.highlightColor = highlightColor;
    this.reflectionColor = reflectionColor;
}
```

Next, I created a class to house different types of materials. Right now, there is only red plastic. It's a bright red material that has a white specular highlight.
public final class Materials \{

```
private Materials() {
}
public static final Material RED_PLASTIC = new Material(
    0.1,
    l
    new double[] { 1, 0, 0 },
    new double[] { 1, 1, 1 }
    new double[] { 0, 0, 0 }
```

```
public class Intersection {
    public double time;
    public double time;
    public double[] normal = new double[3]
    public Material material;
}
```


3D objects in the scene are represented by the following interface:

```
public interface IObject {
    ublic boolean intersect
        double[] o, double[] d, boolean primaryRay, double maxTime,
        double[][] temps,
        Intersection intersection)
}
```

The intersect method returns true if the ray intersects the 3D object. If the primaryRay parameter is set to true, then additional information about the intersection will be stored in the intersection parameter. The parameters \circ and d are the origin and direction of the ray respectively. The maxTime parameter is the intersection time upper-bound. The epsilon lower-bound constant is defined in Main. Finally, the temps parameter are temporary vectors that can be used during the intersection calculation. The render method passes in 16 of them

Here is an implementation using the ray-sphere intersection formula from above. Notice that if primaryRay is not set to true, it does not bother to compute the hit point and the surface normal When casting shadow rays and when casting ambient occlusion rays, we only care about the return value.

```
public class Sphere implements IObject {
    public double[] center = new double[3];
    public double radius = 1;
    public Material material;
    public Sphere(
        double x, double y, double z, double radius, Material material) {
        vec.assign(center, x, y, z);
        this.radius = radius;
        this.material = material;
    }
    public boolean intersect
        double[] o, double[] d, boolean primaryRay, double maxTime,
        double[][] temps,
        Intersection intersection) {
    Vec.subtract(temps[0], o, center);
    double B = 2.0 * Vec.dot(d, temps[0]);
    double C = Vec.magnitude2(temps[0]) - radius * radius;
    double square = B * B - 4 * C;
    if (square >= 0)
        double sqrt = Math.sqrt(square);
        double t1 = 0.5 * (-B - sqrt).
        double t2 = 0.5 * (-B + sqrt)
        if (t1 >= Main FPSTI=false;
            <N && t1 <= maxTime) {
            Antersected = true;
            else if (t2 >= Main.EPSILON && t2 < maxTime) {
            intersected = true;
            intersection.time = t2;
            }
            if (primaryRay && intersected) {
                Vec.ray(intersection.hit, o, d, intersection.time);
                Vec.constructUnitVector(intersection.normal, intersection.hit, center);
                intersection.material = material
            }
        if (intersected) {
            return true;
        }
    }
    return false;
}
```

Finally, I updated the render method using the Phong Shading model and I tested it with a scene containing a single sphere.
private volatile lobject[] scene
$=\{$ new Sphere ($0,0,0,50$, Materials.RED_PLASTIC) \};
private void render() \{
double[] $u=$ new double [3];
double[] $\mathrm{v}=$ new double [3]
$\begin{array}{ll}\text { double[] } & \text { w }=\text { new double [3]; } \\ \text { double [] } \\ c=\text { new }\end{array}$
double[] $\mathrm{c}=$ = new double [3];
double[] $\mathrm{d}=$ new double [3]
double[] $1=$ new double [3];
double[] $\mathrm{r}=$ new double [3]
double[][] temps = new double [16] [3];
Intersection intersection $=$ new Intersection();
Intersection bestIntersection $=$ new Intersection();
Vec.constructUnitVector(w, EYE, LOOK);
Vec.ray(c, EYE, w, -DISTANCE_TO_VIRTUAL_SCREEN);
Vec.onb (u, v, w) ;
RandomDoubles randomDoubles = new RandomDoubles();
int[] pixels = new int[WIDTH];
double[] pixel = new double[3]
while(true) \{
int $\mathrm{y}=$ getNextRowIndex(); if ($\mathrm{y}>=\mathrm{HEIGHT}$)
\}
for (int $\mathrm{x}=0$; $\mathrm{x}<$ WIDTH; $\mathrm{x}++$) $\{$
Vec.assign(pixel, 0, 0, 0);
for (int $1=0 ; 1<$ SQRT SAMPLES; $1++$)
double $\mathrm{b}=\mathrm{y}+$ INVERSE_SQRT_SAMPLES * $^{\text {i }}$;

```
    if (SQRT_SAMPLES == 1) {
    b}+=0.5
    } else {
    b += randomDoubles.random();
}
b = VIRTUAL_SCREEN_RATIO * (HALF_HEIGHT - b);
    for(int j = 0; j < SQRT_SAMPLES; j++) {
    double a = x + INVERSE__SQRT_SAMPLES * j;
    if (SQRT_SAMPLES == 1) {
    a += 0.5
    } else {
    } a
    a = VIRTUAL_SCREEN_RATIO * (a - HALF_WIDTH);
    Vec.map(p, c, u, v, a, b);
    Vec.constructUnitVector(d, p, EYE);
    boolean hit = false;
    bestIntersection.time = Double.POSITIVE_INFINITY;
    for(int k = scene.length - 1; k >= 0; k--) {
    IObject object = scene[k];
        if (object.intersect(EYE, d, true, Double.POSITIVE_INFINITY,
            temps, intersection)) {
            f (intersection.time < bestIntersection.time) {
            hit = true;
            bestIntersection.time = intersection.time;
            Vec.assign(bestIntersection.normal, intersection.normal)
            Vec.assign(bestIntersection.hit, intersection.hit);
            bestIntersection.material = intersection.material;
        }
    }
    if (hit) {
        if (bestIntersection.material.ambientWeight > 0) {
            for(int k = 0; k< 3; k++) {
            pixel[k] += bestIntersection.material.ambientWeight
                * bestIntersection.material.diffuseColor[k]
                * AMBIENT_COLOR[k];
        }
        }
        if (Vec.dot(bestIntersection.normal, d) >= 0) {
            Vec.negate (bestIntersection.normal);
        }
        Vec.constructUnitVector(l, LIGHT, bestIntersection.hit);
        double nDotl = Vec.dot(1, bestIntersection.normal);
        if (nDotl <= 0) (
            continue;
        }
        double maxTime = Vec.distance(bestIntersection.hit, l);
        boolean illuminated = true; 
        lor(int k = scene.length - 1;
            if (object.intersect(bestIntersection.hit, l, false,
                maxTime, temps, intersection)) {
                maxTime, temps, in
            break;
        }
        if (illuminated) {
            if (bestIntersection.material.diffuseWeight > 0) {
            for(int k = 0; k < 3; k++) {
                pixel[k] += bestIntersection.material.diffuseWeight
                    * bestIntersection.material.diffuseColor[k]
                    * INVERSE_PI
                    * RADIANCE_ SCALE
                    * LIGHT_COİOR[k]
                    * nDotl;
            }}\mp@subsup{}{}{}
            if (bestIntersection.material.specularWeight > 0) {
                Vec.scale(r, bestIntersection.normal, 2.0 * nDotl);
            Vec.subtract(r, l);
            Vec.subtract (r, 1);
            if (rDotMd > 0) {
                for(int k= 0; k < 3; k++) {
                    pixel[k] += bestIntersection.material.specularWeight
                    * Math.pow(rDotMd,
                        bestIntersection.material.shininess)
                            * RADIANCE SCALE
                            * LIGHT_COİOR[k]
                            * nDotl
                            * bestIntersection.material.highlightColor[k];
                }
            }
        }
    }
}
int value = 0;
lor value = 0; i < 3; i++) {
    int intensity = (int)Math.round(255
        intensity = (int)Math.round(255 ( Math.pow(pixel[i] * INVERSE_SAMPLES, INVERSE_GAMMA));
    if (intensity < 0) {
    intensity = 0;
    } else if (intensity > 255) {
    intensity = 255;
    }
    value <<= 8;
    value |= intensity;
}
pixels[x] = value;
```

```
    }
    rowCompleted(y, pixels);
```

\} ${ }^{\}}$

Here is the result with 256 samples per pixel:

If you study the code, you'll notice that I did not plug in the reflection term of the Phon Shading model yet.

Step 9

 that point and \mathbf{p} is perpendicular to \mathbf{n}

Since those vectors are perpendicular, we can take advantage of dot product to derive the equation for the plane.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x-a \\
y-b \\
z-c
\end{array}\right] \cdot\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=0} \\
& d(x-a)+e(y-b)+f(z-c)=0 \\
& d x+e y+f z-(a d+b e+c f)=0 \\
& d x+e y+f z=a d+b e+c f \\
& {\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]} \\
& \vec{n} \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\vec{p} \cdot \vec{n}
\end{aligned}
$$

 intersection.

Our case is a little simpler:

$$
\overrightarrow{0}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

$b+e t=y$

$$
t=\frac{y-b}{e}
$$

$$
\begin{aligned}
& x=a+t d \\
& z=c+t f
\end{aligned}
$$

Above, $\mathrm{y}=0$, simplifying it further.
 and then floor it, we get a pair of integer coordinates of the upper-left corner of the square.

Notice that diagonals always have the same color. We can represent diagonals going from the lower-left to the upper-right by the following equation where t and a are integers.

$$
\left[\begin{array}{c}
t \\
t+a
\end{array}\right]
$$

Above, a is the z-intercept. Adjusting it affects where the diagonal line crosses the z-axis. If we add the components together, we get:

$$
2 t+a
$$

$2 t$ is an even number. Even plus even is even and even plus odd is odd. The parity (even/odd) of the sum is completely determined by a. This means we can determine the color of any point on the plane by dividing each coordinate component by s, flooring them and adding the resulting integer components together. The parity of the sum determines the color.
Based off the above discussion, I created the Ground:
public class Ground implements IObject f
public double squareSize;
public double inverseSquareSize;
public Material materiall;
public Material material2;
public Ground (double squareSide, Material material1, Material material2) (
this.squareSize = squareSide;
this.materiall = materiall;

